Analysis of Variance

(ANOVA)

With TI

What is **ANOVA**?

It is a method used whenever we test for the equality of at least three population means simultaneously.

How do we set up H_0 and H_1 for this method?

$$H_0: \mu_1 = \mu_2 = \mu_3 = \cdots = \mu_k$$

 H_1 : At least one population mean is different.

ANOVA uses F-distribution and it is always a Right-Tail Test.

How do we find **df** when working with **ANOVA**?

$$Ndf = k - 1$$

$$Ddf = n - k$$

Where

- \triangleright *k* is the number of groups or samples.
- \triangleright *n* is the total sample size of all groups or samples.

The table below shows the number of defects for three models in an assembly line.

Model 1:	5	7	6	6		
Model 2:	5	4	3	5	3	4
Model 3:	7	6	8	9	5	

Find the degrees of freedom for attempting to compare three population means.

Solution:

We begin by finding the following

- k = 3 & Ndf = k 1 = 2
- ightharpoonup n = 15 & Ddf = n k = 12

Use the last example to test the claim at the 0.02 level of significance that the average number of defects is not the same for the three models.

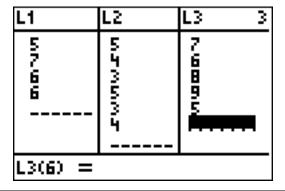
Solution:

We begin by setting up H_0 and H_1 .

$$H_0: \mu_1 = \mu_2 = \mu_3$$

 H_1 : At least one mean is different. Claim & RTT

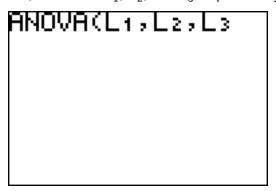
Store the data elements from each group in L_1 , L_2 , and L_3 .



Now press STAT, go to TESTS, then find ANOVA.

```
EDIT CALC MEMB
B^2-PropZInt...
C:X²-Test...
D:X²GOF-Test...
E:2-SampFTest...
F:LinRegTTest...
G:LinRegTInt...
```

Select **ANOVA**, then enter L_1 , L_2 , and L_3 separated by comma.



Press ENTER to execute ANOVA.

The display below shows the output by the **ANOVA** command.

Now we have the P-Value p = 0.003. p-value is less than 0.02 significance level, therefore H_1 is valid, we fail to reject the claim.

In a biological experiment 4 mixtures of a certain chemical are used to enhance the growth of a certain type of plant over a specific time period. The following growth data, in centimeters, are recorded for the plants that survive.

Mixture 1:	8.2	8.7	9.4	9.2		
Mixture 2:	7.7	8.4	8.6	8.1	8.0	
Mixture 3:	6.9	5.8	7.2	6.8	7.4	6.1
Mixture 4:	6.8	7.3	6.3	6.9	7.1	

Test the claim that there is no significant difference in the average growth of these plants for the different mixtures of the chemical. Use a 0.01 level of significance.

Solution:

We begin by setting up H_0 and H_1 .

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$$
 Claim

 H_1 : At least one mean is different. RTT

- k = 4 & Ndf = k 1 = 3
- ightharpoonup n = 20 & Ddf = n k = 16
- $\sim \alpha = 0.01$

Using **TI** command **ANOVA**, we get the P-Value $p = 8.03 \times 10^{-6}$.

p—value is less than 0.01 significance level, therefore H_0 is invalid, we reject the claim.

The following table shows randomly selected exam scores from 4 different colleges of the same exam in the same semester and modality.

Citrus:	80	88	78	68	92	70
Chaffey:	75	84	86	92	65	100
ELAC:	69	88	92	79	100	80
Mt. SAC:	65	78	83	99	100	70

Test the claim that the mean of all exam scores in these colleges are the same.

Solution:

We begin by setting up H_0 and H_1 .

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$$
 Claim

 H_1 : At least one mean is different. RTT

- k = 4 & Ndf = k 1 = 3
- ightharpoonup n = 24 & Ddf = n k = 20
- ▶ No Significance Level Given & Use $\alpha = 0.05$

Using **TI** command **ANOVA**, we get the P-Value p = .879.

p—value is greater than 0.05 significance level, therefore H_0 is valid, we fail to reject the claim.

Suppose we are given **CTS** F = 2.678 for 5 groups and the total size of 50.

- Find the corresponding **p-Value**
- Select α values from $\{0.1, 0.05, 0.02, 0.01\}$ to support H_0 .
- Select α values from $\{0.1, 0.05, 0.02, 0.01\}$ to reject H_0 .

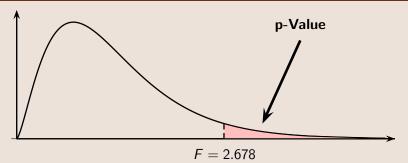
Solution:

We begin by finding \mathbf{Ndf} and \mathbf{Ddf} .

- k = 5 & Ndf = k 1 = 4
- n = 50 & Ddf = n k = 45

We now have necessary information to find the corresponding **p-Value**.

Solution Continued:



p-Value=fcdf(2.678, E99, 4, 45) ≈ 0.044

- ▶ To support H_0 , we need **p-Value** > α therefore we choose α to be 0.02 or 0.01 from the recommended values.
- ▶ To reject H_0 , we need **p-Value** $\leq \alpha$ therefore we choose α to be 0.05 or 0.1 from the recommended values.